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An anisotropic harmonic oscillator has mean-square amplitudes of vibration UI, U2 and U3. The geo- 
metric mean, Ugm, is (U1U2U3) I/3 and the arithmetic mean Uam, is (Ut+ U2+ U3)/3. It is shown that 
estimates of U~so which minimize the least-square error of structure factors is bounded by the ine- 
qualities Ugm < UN < Ux < U~m where UN is the equivalent isotropic U for the neutron diffraction ex- 
periment and Ux is the corresponding estimate of Uiso for the X-ray diffraction experiment. The results 
have been applied to H atoms in sucrose where the U1, U2 and U3 are taken from the neutron diffraction 
analysis of Brown & Levy [Acta Cryst. (1973). B29, 790-797]. It is found that Ux ~ _ 0"75U am q-0"25U gin. 
When Ux is compared to Uiso (X-ray) from Hanson, Sieker & Jensen [Acta Cryst. (1973). B29, 797-808], 
Ux's for the fourteen H atoms bonded to C atoms exceed Uiso (X-ray) by ~ 0.022 A2 (or equivalently 
~ 1"7 A 2 in B units, where B= 8zr2U). A systematic trend for the eight hydroxyl hydrogens is not found; 
the average difference Ux-  Ul~o (X-ray) is -0-006/~2. The discrepancy for H bonded to C is consistent 
with quantum-chemical calculations of small molecules; the apparent agreement of Ux and Uiso (X-ray) 
for H bonded to O may reflect the influence of hydrogen bonding in crystalline sucrose. 

Introduction 

It is desirable to compare atomic thermal parameters 
derived from neutron diffraction data to those obtained 
from X-ray diffraction analyses. Differences in the re- 
suits have been interpreted as a deficiency in X-ray 
atomic form factors (Coppens, 1970). Presumably the 
charge cloud about the atom is sufficiently deformed by 
the molecular environment so that thermal parameters 
from X-ray data are not exclusively a function of the 
nuclear properties of the molecular crystal. For the 
case of bonded hydrogen atoms, isotropic temperature 
factors are spuriously low if free-atom form factors are 
used (Jensen & Sundaralingam, 1964; Mason, Philips 
& Robertson, 1965; Hvoslef, 1968). The use of a 
bonded-hydrogen-atom scattering factor (Stewart, 
Davidson & Simpson, 1965) generally gives larger 
thermal parameters. 

Hanson, Sieker & Jensen (1973) have reported a 
detailed comparison of thermal parameters from X-ray 

and neutron (Brown & Levy, 1973) diffraction analyses 
of sucrose. In the X-ray refinement, isotropic tem- 
perature factors for the H atoms were introduced as 
least-squares parameters. In the neutron analysis, 
however, anisotropic temperature parameters were as- 
signed to the protons. The question arises as to what 
is the equivalent isotropic temperature parameter from 
the neutron results which is to be compared to the X-ray 
result. Hanson et al. (1973) chose the arithmetic mean 
of the principal values of the neutron thermal ellipsoid 
tensor. In an earlier report, however, Hanson, Sieker 
& Jensen (1972) used the geometrical mean of the three 
principal values as the equivalent isotropic temperature 
parameter. Hamilton (1959) has shown that the arith- 
metic mean corresponds to an isotropic thermal 
motion with the same value of (r 2) as for the aniso- 
tropic harmonic oscillator. In the same paper it was 
acknowledged that this equivalent isotropic thermal 
parameter does not necessarily minimize the least- 
squares error. The geometrical mean is determinant- 
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invariant. In this case the equivalent isotropic oscillator 
motion has the same total probability, (1), as the 
anisotropic oscillator. Or, stated in another way, this 
equivalent isotropic oscillator has the same sum of 
amplitudes of coherent X-ray scattering over an in- 
finite Ewald sphere as does the anisotropic oscillator; 
that is, 

I exp ( -  ½ UisoSZ) dS  

f exp [_½(UtS2+ 2 = U2Sy-{- UaS~)]dS. 

But this U~so also does not minimize the least-squares 
error. An analysis for the estimate of the equivalent 
isotropic temperature parameter that minimizes the 
least-squares error is given below. 

Least-squares estimate of U~o 

In order to simplify the calculation it is assumed that 
the atom is at the origin of a cell and that the Ewald 
sphere is essentially infinite. It is further assumed that 
the X-ray and neutron data have the same statistical 
weights which at most decrease much less rapidly with 
ISl than do the intensities. The true amplitude of scat- 
tering for the anisotropic oscillator with atomic scat- 
tering factorf(S) isf(S)  exp (-½StUS) where S is the 
Bragg vector with components 2nh,2nk,2nl and has 
magnitude 4n sin 0/2. The tensor U contains the mean- 
square amplitudes of vibration of the anisotropic 
oscillator. The equivalent least-squares isotropic 
oscillator has Gso such that 

32U5 [F'(U)] = 

9[F(U)]  3 

Ugm UN Ux Uam 
U ---,~ 

Fig. 1. Graph of the ninth-order polynomials from equation 
(3). UN is the solution to (3). Ugm=(U~U2U3) ~/3 and U~= 
Ut+ U2+ U3)/3 are shown schematically. Ux is the solution 
to (2) for If(S)] z a decreasing function with increasing S. 

? 
e= t [f(S)]2[exp (-½StUS) 

- e x p  (-½Ui~oSZ)]2dS=minimum. (1) 

By differentiating (1) with respect to U~o and setting 
the result equal to zero, 

f [Sf(S)] exp [-½(S'US + UisoS2)]dS 

-- I [Sf(S)]2 exp ( -  U~soS2)dS =0 .  (2) 

It is clear from (2) or (1) that the value for U~so depends 
on the nature o f f (S )  as well as U. First we consider 
the neutron case wheref(S) is a constant for all S. By 
straightforward integration of (2) and some tedious 
algebra it can be shown that (2), for f (S) - -1 ,  is, 

32 US[F'( U)] 2 - -  9[(F(U)] 3 =0  (3) 
where 

F(U)=Ua+(UI + U2+ U3)U 2 
+(u~u2+GU3+U2U3)U+UIU2G (4) 

F'(U)=dF/dU 

and U~, U2, Us are the principal values of U. The ninth- 
order polynomial (3) has only one real and positive 
root since U, > U~ ___ U3 > 0. This is shown graphically 
in Fig. 1, where the root is denoted /-.IN. The left-hand 
side of (3) has a positive slope so UN from (3) insures 
that (1) is a minimum. When U is taken as the arith- 
metic mean (U am), then 

32 VaSm[F'(Van,) ] ~ 9[F( Vam)] 3 (5) 
Uam=(UI + U2+ U3)/3 

and when U is the geometrical mean (Ugm) 

32 USgm[F'(Ugm)] < 9[F(Ugm)] 3 (6) 
Ugm=( U1U2U3) 1/3 . 

The equalities in (5) and (6) hold when U~ = U2= U3. 
Thus we see that the least-squares estimate for the 
equivalent isotropic temperature factor in the neutron 
diffraction experiment is bracketed by the arithmetic 
and geometric means of the principal components of U. 
The two means are schematically shown on the abscissa 
in Fig. 1. 

For the X-ray diffraction case, f (S)  decreases with 
increasing S. If we approximate f (S)  with exp (-~zS z) 
in (2) and take the limit of c~--~ oo, Uiso is the arith- 
metic mean, U~m. The solution to (2) from the X-ray 
diffraction experiment, Ux, is therefore between U~ 
and Uam. Ux is depicted schematically in Fig. 1. For a 
scattering factor that decreases relatively rapidly, such 
as the H atom, Ux will be rather closer to Uam than for 
a more extensive form factor such as for C or O atoms. 

Hydrogen atoms in sucrose 

As an example, the anisotropic thermal parameters for 
the 22 protons in sucrose have been analyzed. The 
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thermal parameters, which are assumed to be correct, 
have been taken from the neutron diffraction results of 
Brown & Levy (1973). The principal values are tabu- 
lated in Table 1 under the headings U1, U2 and U3. The 
arithmetic and geometric means are also listed. The 
mean-square amplitudes under Ux are the solutions to 
(3). These values are the least-squares estimates of the 
equivalent isotropic temperature factor for the protons 
from the neutron diffraction experiment. They are an 
estimate of the results Brown & Levy would find had 
they chosen to refine the protons as isotropic oscillators 
in a least-squares fit to observed structure factors. The 
column under Ux is a solution to (2) where f (S )  is a 
scattering factor for a bonded hydrogen atom. Ux are 
the values to compare to the corresponding isotropic 
U's from the X-ray results of Hanson, Sieker & Jensen 
(1973). For the rather moderate anisotropy in the 
motion of the protons in Table 1, Ux---0"75 Uam+0"25 
U~m. When the anisotropy is more extreme Ux is some- 
what closer to Ug m (e.g. H(O4) in Table 1, Ux=0"64 
Uam +0"36 Ugm). 

The average Ux for H bonded to C from Table 1 is 
0.04018 A 2 and for H bonded to O, the average is 
0.04697 A 2. These estimates have /~iso (B=8x 2U) of 
3.17 and 3.71, respectively, as compared to 3.23 and 
3.84 reported in Table 6 by Hanson, Sieker & Jensen 
(1973). Thus the least-squares estimates are not greatly 
less than the equivalent isotropic temperature factor 
derived from the arithmetic mean. The average iso- 
tropic U for H bonded to C from Table 4 of Hanson, 
Sieker & Jensen (1973) is 0.018 A 2 or B =  1.46 and is 
not 1.33 as recorded in Table 6. A detailed comparison 
of Table 4 from Hanson, Sieker & Jensen with Ux in 

Table 1 here shows that for H bonded to C there is a 
systematic difference with Ux-ray< Ux. The average 
difference is -0 .022  A 2 in U or - 1.7 in B. A similar 
comparison for H bonded to O does not show a 
systematic trend. For  H(O3) and H(O4), Ux-ray< Ux; 
for H(O'I)  and H(O'3), Ux_ray= Ux and for the others 
Ux.ray> Ux, The average difference, Ux_~ay-Ux, is 
0.006 A z or 0.45 in B units. 

The hydrogen-atom scattering factor 

The systematic discrepancy between Ux_ray and Ux for 
H atoms bonded to C in sucrose probably reflects a 
deficiency in the bonded-H-atom scattering factor. It 
is of some interest to see if the discrepancy factor of 
1"7 A z in B units can be reconciled with quantum- 
chemical calculations. The difference Ux-ray--Ux of 
--1"7 A z suggests that the charge density about the 
protons bonded to C atoms is more contracted than 
the charge density of H atoms in molecular hydrogen. 
The best floated spherical H-atom form factor from 
H2 (Stewart, Davidson & Simpson, 1965) can be ap- 
proximately represented by the Fourier-Bessel trans- 
form of a ls orbital product with a ff exponent of 1.16 
bohr -  1. The 1 s Slater-type orbital can be expanded with 
Gaussian functions by the method of least squares 
(Stewart, 1970). For  the present discussion we will use 
a single Gaussian. In this case, the scattering factor for 
a ls orbital product is simply, 

f<ls)z=exp {-[2X2ao2/(~x(2)] (sin 0/,'~) 2} (7) 

where ao=0.529177 A, and c~=0.2709498091 as taken 
from Stewart (1970). An estimate o f (  for the H atoms 

Table 1. Principal values of anisotropic thermal parameters for protons in sucrose, arithmetic and geometric 
means, and least-squares estimates of the equivalent isotropic mean-square amplitude of vibration 

Units in t12. 

U1 U2 U3 Uam* U~mt U~ Ux 
H(C1) 0"03636 0 " 0 3 0 5 6  0 " 0 2 0 0 0  0"02898  0 " 0 2 8 1 2  0 " 0 2 8 3 9  0-02879 
H(C2) 0"04453 0 " 0 4 0 0 7  0 " 0 2 0 3 9  0 " 0 3 4 9 9  0"03313  0 " 0 3 3 7 7  0"03459 
H(C3) 0"05186 0 " 0 3 6 8 4  0"02283  0 " 0 3 7 1 8  0 " 0 3 5 2 0  0 " 0 3 5 8 2  0-03670 
H(C4) 0"04926 0 " 0 3 9 4 6  0'02444 0 " 0 3 7 7 2  0"03621  0 " 0 3 6 7 0  0-03736 
H(C5) 0"04961 0 . 0 4 0 5 5  0 . 0 2 4 4 5  0 . 0 3 8 2 1  0 . 0 3 6 6 4  0 . 0 3 7 1 5  0.03784 
H(C6) 0.07681 0 . 0 5 9 4 2  0 . 0 2 5 2 8  0 . 0 5 3 8 4  0 . 0 4 8 6 9  0 . 0 5 0 4 8  0.05255 
H'(C6) 0 . 0 9 2 2 5  0 . 0 4 4 7 8  0 . 0 2 8 6 8  0 . 0 5 5 2 3  0 . 0 4 9 1 1  0 . 0 5 0 8 3  0-05337 
H(C'I) 0 . 0 7 0 6 3  0 . 0 4 1 5 2  0 . 0 2 1 1 8  0 . 0 4 4 4 4  0 . 0 3 9 6 0  0 . 0 4 1 1 2  0-04319 
H'(C'I) 0 " 0 5 7 1 0  0 . 0 4 3 3 1  0 " 0 2 2 4 6  0 . 0 4 0 9 6  0 . 0 3 8 1 6  0 . 0 3 9 0 9  0.04029 
H(C'3) 0 - 0 3 8 4 5  0 . 0 3 2 4 7  0 . 0 2 0 2 4  0 " 0 3 0 3 9  0 " 0 2 9 3 5  0 - 0 2 9 6 8  0-03016 
H(C'4) 0 . 0 3 8 2 0  0 . 0 3 6 9 2  0 . 0 1 9 8 8  0 . 0 3 1 6 6  0 . 0 3 0 3 8  0 . 0 3 0 8 1  0.03139 
H(C'5) 0 - 0 4 8 5 6  0 . 0 3 5 5 8  0 . 0 2 1 4 1  0 . 0 3 5 1 8  0 . 0 3 3 3 2  0 - 0 3 3 9 1  0.03475 
H(C'6) 0 - 0 8 4 5 8  0 - 0 5 2 2 1  0 . 0 2 7 4 4  0 . 0 5 4 7 4  0 . 0 4 9 4 8  0 . 0 5 1 1 4  0.05328 
H'(C'6) 0 . 0 7 2 1 2  0 . 0 5 4 5 0  0 . 0 2 2 0 1  0 . 0 4 9 5 4  0 . 0 4 4 2 3  0 . 0 4 6 1 0  0-04827 
H(O2) 0.05410 0 . 0 4 4 6 5  0 . 0 2 6 1 2  0 . 0 4 1 6 3  0 . 0 3 9 8 1  0 . 0 4 0 4 1  0.04119 
H(O3) 0"08558 0 . 0 3 2 8 6  0 . 0 2 6 9 9  0 " 0 4 8 4 8  0 . 0 4 2 3 4  0 . 0 4 3 9 0  0.04658 
H(O4) 0.18642 0 . 0 5 2 6 7  0 . 0 2 4 4 5  0 . 0 8 7 8 5  0 . 0 6 2 1 5  0 . 0 6 9 0 5  0.07860 
H(O6) 0.06430 0 . 0 4 9 9 8  0 . 0 3 7 4 9  0 . 0 5 0 5 9  0 . 0 4 9 3 9  0 . 0 4 9 7 5  0-05025 
H(O'I) 0 - 0 5 7 9 6  0 . 0 3 3 5 6  0 . 0 3 0 5 1  0 - 0 4 0 6 8  0 . 0 3 9 0 0  0 . 0 3 9 4 6  0-04021 
H(O'3) 0 . 0 4 8 7 2  0 . 0 3 7 9 0  0 . 0 2 4 3 8  0 . 0 3 7 0 0  0 . 0 3 5 5 7  0 . 0 3 6 0 2  0.03666 
H(O'4) 0 . 0 5 1 3 6  0 . 0 4 2 6 2  0 . 0 2 0 7 2  0 . 0 3 8 2 3  0 . 0 3 5 6 6  0 . 0 3 6 5 4  0.03766 
H(O'6) 0 . 0 6 0 3 5  0 - 0 4 1 6 2  0 . 0 3 2 9 3  0 . 0 4 4 9 6  0 . 0 4 3 5 7  0 . 0 4 3 9 7  0.04458 

* G~. ,=(U,+ G2+ U913. t U,~=(U~U,U~W ~. 
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bonded to C atoms in sucrose follows from the simple 
relation, 

2~zZ a~/ (c~(z) = 27rZ aZo/ ( C~Ds) - 1.7 (8) 

where Csos= 1.16 bohr -1. From (8) the value for ff is 
1-23 bohr -  t. This estimate is very close to the molecular 
optimized exponent of 1.24 bohr-1 reported by Hehre, 
Stewart & Pople (1969). We conclude from this 
analysis that an error of - 1.7 A 2 in Bx_ray for H atoms 
bonded to C is reasonable and is consistent with ab 
initio molecular-orbital calculations on a variety of 
small molecules that contain hydrogen and first-row 
atoms. It is not clear why a similar discrepancy for H 
atoms bonded to O in sucrose is not found. For 
Bx.ray--B x of 0"45 A~ z, the ( exponent is 1.14 bohr -1 
From molecular-orbital calculations (Hehre, Stewart 
& Pople, 1969) one would expect ( to be ~ 1.28 bohr -L  
This would give rise to an error of - 2.7 A z in Bx.ray. In 
the sucrose crystal, however, the H atoms in the 
hydroxyl groups are extensively hydrogen-bonded. It 
could well be that this perturbation makes the charge 
cloud about the proton rather more diffuse than for 
the isolated molecule. It is interesting to note that 
H(O4) has the largest negative value of Bx-ray-Bx 
( -  1"23 A~ z) for the hydroxyl hydrogens. This hydrogen 
is the only non-hydrogen-bonded hydroxyl hydrogen 
in sucrose. For H(O3), Bx_ray-Bx is -0 -28  A 2 and for 

all other OH's the discrepancy is either zero or posi- 
tive. 

The author is grateful to Professor G. A. Jeffrey for 
pointing out that H(O4) is not hydrogen-bonded in the 
sucrose crystal. This research was supported by the 
National Science Foundation under Grant MPS74- 
17592. 
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Die Elektronendiehte in Lithinmhydroxid (LiOH) 

VON S. GOTTLICHER UND B. KIESELBACH 

Faehgebiet Strukturforschung der Technrschen Hochschule Darmstadt, 61 Darmstadt, Deutschland (BRD) 

(Eingegangen am 5. Mai 1975; angenommen am 2. Juli 1975) 

The electron density in LiOH has been determined by X-ray diffraction. The intensities were measured 
on single-crystal plates and corrected for extinction, double reflexion and thermal diffuse scattering. 
The values found by integration over the electron density were 2.0 e in lithium (Li+), 8.7 e in oxygen 
(0 -°"7) and 0.3 e in the hydrogen (H+°'7). One electron is distributed over a wide range between the 
LiOH layers in the lattice. 

Einleitung 

Lithiumhydroxid bildet ein tetragonales Schichtgitter 
der Raumgruppe P4/nmm. Die Elementarzelle mit den 
Gitterkonstanten a = b = 3,549 u n d c - -  4,334 A, enth~ilt 
zwei Formeleinheiten LiOH. Die Lithiumatome liegen 
in der in Fig. 1 angegebenen Aufstellung in den Eck- 
punkten und auf der Mitte der Basisfl~iche, die Sauer- 
stoffatome in ½0z(O) und 01z~(O), die Wasserstoffatome 
in ½0z(H) und 0½~?(H), mit z(O)=0,194, z(H)=0,407. 
Die Lage- und Schwingungsparameter der Atome 
wurden von Dachs (1959) bestimmt, wobei gefunden 
wurde, dass die z-Komponenten der mittleren Schwin- 

gungsamplituden der Lithium- und Sauerstoffatome 
grrsser sind als die Komponenten in der xy-Ebene. 
Ftir den Wasserstoffkern bestimmte Dachs erheblich 
gr6ssere Schwingungsamplituden in Richtung x und y, 
die er als Drehschwingung der OH-Gruppe deutete. 

fiber die Ladung der Ionen liegen Informationen 
aus Kernquadrupolresonanzmessungen von Campbell 
& Coogan (1965) und yon Coogan (1965) vor, die zu 
einem Modell mit zwei Elektronen im Bereich des 
Lithiums (Li+), 8,7 Elektronen im Bereich des Sauer- 
stoffs (0  °'7-) und 1,3 Elektronen im Bereich des Was- 
serstoffs (H °'a-) ftihrten. Die Ladungsverteilung in der 
OH-Gruppe wurde yon Bader & Gangi (1971) quanten- 


